Cortical feedback signals generalise across different spatial frequencies of feedforward inputs

نویسندگان

  • Yulia Revina
  • Lucy S. Petro
  • Lars Muckli
چکیده

Visual processing in cortex relies on feedback projections contextualising feedforward information flow. Primary visual cortex (V1) has small receptive fields and processes feedforward information at a fine-grained spatial scale, whereas higher visual areas have larger, spatially invariant receptive fields. Therefore, feedback could provide coarse information about the global scene structure or alternatively recover fine-grained structure by targeting small receptive fields in V1. We tested if feedback signals generalise across different spatial frequencies of feedforward inputs, or if they are tuned to the spatial scale of the visual scene. Using a partial occlusion paradigm, functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) we investigated whether feedback to V1 contains coarse or fine-grained information by manipulating the spatial frequency of the scene surround outside an occluded image portion. We show that feedback transmits both coarse and fine-grained information as it carries information about both low (LSF) and high spatial frequencies (HSF). Further, feedback signals containing LSF information are similar to feedback signals containing HSF information, even without a large overlap in spatial frequency bands of the HSF and LSF scenes. Lastly, we found that feedback carries similar information about the spatial frequency band across different scenes. We conclude that cortical feedback signals contain information which generalises across different spatial frequencies of feedforward inputs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feedback Decoding of Spatially Structured Population Activity in Cortical Maps

A mechanism is proposed by which feedback pathways model spatial patterns of feedforward activity in cortical maps. The mechanism can be viewed equivalently as readout of a content-addressable memory or as decoding of a population code. The model is based on the evidence that cortical receptive fields can often be described as a separable product of functions along several dimensions, each repr...

متن کامل

The laminar integration of sensory inputs with feedback signals in human cortex

The cortex constitutes the largest area of the human brain. Yet we have only a basic understanding of how the cortex performs one vital function: the integration of sensory signals (carried by feedforward pathways) with internal representations (carried by feedback pathways). A multi-scale, multi-species approach is essential for understanding the site of integration, computational mechanism an...

متن کامل

Direction of magnetoencephalography sources associated with feedback and feedforward contributions in a visual object recognition task.

Identifying inter-area communication in terms of the hierarchical organization of functional brain areas is of considerable interest in human neuroimaging. Previous studies have suggested that the direction of magneto- and electroencephalography (MEG, EEG) source currents depend on the layer-specific input patterns into a cortical area. We examined the direction in MEG source currents in a visu...

متن کامل

Interactions between higher and lower visual areas improve shape selectivity of higher level neurons-explaining crowding phenomena.

Recent theories of visual perception propose that feedforward cortical processing enables rapid and automatic object categorizations, yet incorporates a limited amount of detail. Subsequent feedback processing highlights high-resolution representations in early visual areas and provides spatial detail. To verify this hypothesis, we separate the contributions of feedforward and feedback signals ...

متن کامل

Contextual Feedback to Superficial Layers of V1

Neuronal cortical circuitry comprises feedforward, lateral, and feedback projections, each of which terminates in distinct cortical layers [1-3]. In sensory systems, feedforward processing transmits signals from the external world into the cortex, whereas feedback pathways signal the brain's inference of the world [4-11]. However, the integration of feedforward, lateral, and feedback inputs wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره   شماره 

صفحات  -

تاریخ انتشار 2017